along with cyclohexanoneoxime (16) (eq 4). However, Sm-(O^{*i*}Pr)₃ promoted the hydrolysis of oxime acetate **14** to oxime **16** rather than the addition of hydrogen cyanide. Compound 15 is an attractive precursor of an α -amino acid. The present lanthanide-catalyzed hydrocyanation of oxime ester provides an alternative route for the synthesis of α -acetylaminonitrile, although the optimum reaction conditions must be further investigated.

^a Parenthesis shows the yield by Sm(OPr)₃ in THF.

In conclusion, we found a direct acetylcyanation method of aldehydes with AC in the presence of IPA catalyzed by $Cp_2Sm(thf)_2$ under mild conditions. α,β -Unsaturated carbonyl compounds produced Michael addition products under neutral conditions.

Experimental Section

General Procedure. ¹H and ¹³C NMR spectra were measured at 270 and 67.5 MHz, respectively, in CDCl₃ with TMS as the internal standard. IR spectra were measured as thin films on NaCl plates or KBr pressed disks. GLC analysis was performed with a flame ionization detector using a 1 mm \times 30 m capillary column (OV-1). Mass spectra were determined at an ionizing voltage of 70 eV. Isopropenyl acetate and acetone cyanohydrin were purchased from a commercial origin and distilled prior to use. Cp*2Sm(thf)2,13 Cp*2Yb(thf)2,13 Sm(O/Pr)3,14

(13) (a) Evans, W. J.; Bloom, I.; Hunter, W. E.; Atwood, J. L. J. Am. Chem. Soc. 1981, 103, 6507. (b) Evans, W. J.; Grate, J. W.; Choi, H. W.; Bloom, I.; Hunter, W. E.; Atwood, J. L. J. Am. Chem. Soc. 1985, 107, 941. (c) Evans, W. J.; Bloom, I.; Hunter, W. E.; Atwood, J. L. Organometallics 1985, 4, 112

(14) Mazdiyasin, K. S.; Lynch, C. T.; Smith, J. S. Inorg. Chem. 1966, 5, 342.

(15) (a) Thom, K. F. U.S. Patent 3615169, 1971; Chem Abstr. 1972, 76, 5436a. (b) Forsberg, J. H.; Spaziano, V. T.; Balasubramanian, T. M.; Lin, G. K.; Kinsley, S. A.; Duckworth, C. A.; Poteruca, J. J.; Brown, P. S.; Miller, J. L. J. Org. Chem. 1987, 52, 1017. (c) Collins, S.; Hong, Tetrahedron Lett. 1987, 28, 4391. (d) Almasio, M. C.; Arnaud-Neu, F.; Schming-weill, M. J. Helv. Chim. Acta 1983, 66, 1296. (e) Kobayashi, S.; Hachiya, I. J. Org. Chem. 1994, 59, 3590.
(16) Girard, P.; Namy, J. L.; Kagan, H. B. J. Am. Chem. Soc. 1980,

102, 2693.

Sm(OTf)₃,¹⁵ SmI₂,¹⁶ and SmI₃¹⁷ were prepared according to literature procedures.

General Procedure for the Cp*2Sm(thf)2-Catalyzed Acetylcyanation of Aldehydes with Acetone Cyanohydrin and Isopropenyl Acetate. To a Schlenk tube containing a toluene solution (1 mL) of Cp*2Sm(thf)2 (0.1 mmol) were added aldehydes (1 mmol), acetone cyanohydrin (1 mmol), and isopropenyl acetate (2 mmol). The reaction mixture was stirred at room temperature for 15 h under argon. After the reaction, wet diisopropyl ether was added to the solution, and the catalyst was removed by filtration. Removal of the solvent under reduced pressure afforded a yellow liquid, which was purified by column chromatography on silica gel with n-hexane/ethyl acetate (10/1 v/v) as eluent to give the corresponding acetates.

2-Acetoxybutyronitrile (2b):¹⁸ ¹H NMR (CDCl₃) δ 1.11 (t, J = 7.4 Hz, 3H), 1.89–2.05 (m, 2H), 2.14 (s, 3H), 5.28 (t, J = 6.6Hz, 1H); ¹³C NMR (CDCl₃) δ 8.9, 20.3, 25.8, 62.2, 116.7, 169.2.

2-Acetoxyisovaleronitrile (2c): ¹H NMR (CDCl₃) δ 1.08 (d, J = 6.8 Hz, 3H), 1.12 (d, J = 6.8 Hz, 3H), 2.10–2.25 (m, 1H), 2.16 (s, 3H), 5.18 (d, J = 5.1 Hz, 1H); ¹³C NMR (CDCl₃) δ 17.3, 17.7, 20.3, 31.0, 66.3, 116.0, 169.2

2-Aetoxy-4-methylvaleronitrile (2d): ¹H NMR (CDCl₃) δ 0.98 (d, J = 6.5 Hz, 3H), 0.99 (d, J = 6.5 Hz, 3H), 1.76–1.90 (m, 3H), 2.13 (s, 3H), 5.36 (t, J = 7.3 Hz, 1H); ¹³C NMR (CDCl₃) δ 20.3. 22.0. 22.1. 24.4. 40.7. 59.8. 117.0. 169.1.

2-Aetoxy-3,3-dimethylbutyronitrile (2e): ¹H NMR (CDCl₃) δ 1.15 (s, 9H), 2.22 (s, 3H), 5.12 (s, 1H); $^{13}\mathrm{C}$ NMR (CDCl₃) δ 20.1, 25.0, 34.5, 69.2, 115.9, 169.1.

2-Aetoxy-2-cyclohexylacetonitrile (2f): ¹H NMR (CDCl₃) δ 1.12–1.32 (m, 5H), 1.67–1.93 (m, 6H), 2.14 (s, 3H), 5.18 (d, J = 7.3 Hz, 1H); ¹³C NMR (CDCl₃) δ 20.3, 25.2, 25.3, 25.7, 27.8, 28.0, 40.0, 65.5, 116.1, 169.2.

2-Aetoxy-2-phenylacetonitrile (2g): ¹H NMR (CDCl₃) δ 2.16 (s, 3H), 6.41 (s, 1H), 7.44-7.53 (m, 5H); ¹³C NMR (CDCl₃) δ 20.4, 62.8, 116.1, 127.8, 129.2, 130.3, 131.7, 168.9.

2-Hydroxy-4-cyanoheptanenitrile (2i): ¹H NMR (CDCl₃) δ 0.99 (t, J = 6.8 Hz, 3H), 1.36–1.78 (m, 4H), 2.05–2.14 (m, 2H), 2.88-3.02 (m, 1H), 3.15-3.22 (m, 1H), 4.65-4,80 (m, 1H); ¹³C NMR (CDCl₃) δ 13.3, 20.1, 27.1, 33.7, 36.9, 58.0, 119.2, 120.7.

1-Cyano-N-cyclohexylhydroxyamine O-acetate (15): ¹H NMR (CDCl₃) δ 1.18–2.08 (m, 10H), 2.11 (d, J = 2.7 Hz, 3H), 7.58 (s, 1H); $^{13}\mathrm{C}$ NMR (CDCl_3) δ 18.7, 21.7, 27.1, 24.6, 32.9, 59.4, 119.9, 169.9.

Acknowledgment. This work is supported by a Grant-in-Aid for Scientific Research (No. 10132262) on Priority Areas (No. 283), "Innovative Synthetic Reactins" from Monbusho.

Supporting Information Available: ¹H NMR, ¹³C NMR, IR, and MS spectral for compounds 2b-g, 2i, 4, 6, 8, 10, and 15 and IR and MS spectral data. This material is available free of charge via the Internet at http://pubs.acs.org.

JO990030O

(17) Yu, Y.; Lim, R.; Zhang, Y. *Tetrahedron Lett.* **1993**, *34*, 4547. (18) Castells, J.; Jaime, C.; Lopez-Calahorra, F.; Santaio, N.; Velasco, D. J. Org. Chem. 1988, 53, 5363.

Additions and Corrections

Vol. 64, 1999

Bruno Linclau, Ashvani K. Sing, and Dennis P. Curran*. Organic-Fluorous Phase Switches: A Fluorous Amine Scavenger for Purification in Solution Phase Parallel Synthesis.

Page 2835. Ashvani K. Sing's surname should be spelled Singh.

JO9949873

10.1021/jo9949873 Published on Web 05/04/1999